pypmc
1.2.2
1. Overview
2. Installation
3. User guide
4. Examples
5. References
6. Reference Guide
pypmc
Index
Index
A
|
B
|
C
|
D
|
E
|
G
|
H
|
I
|
K
|
L
|
M
|
N
|
P
|
R
|
S
|
U
|
V
|
W
A
AdaptiveMarkovChain (class in pypmc.sampler.markov_chain)
append() (pypmc.tools.History method)
B
ball() (in module pypmc.tools.indicator)
C
calculate_covariance() (in module pypmc.sampler.importance_sampling)
calculate_expectation() (in module pypmc.sampler.importance_sampling)
calculate_mean() (in module pypmc.sampler.importance_sampling)
clear() (pypmc.tools.History method)
combine_weights() (in module pypmc.sampler.importance_sampling)
create_gaussian_mixture() (in module pypmc.density.mixture)
create_t_mixture() (in module pypmc.density.mixture)
D
Dirichlet_log_C() (in module pypmc.mix_adapt.variational)
E
E_step() (pypmc.mix_adapt.variational.GaussianInference method)
ess() (in module pypmc.tools.convergence)
evaluate() (pypmc.density.base.LocalDensity method)
(pypmc.density.base.ProbabilityDensity method)
(pypmc.density.gauss.Gauss method)
(pypmc.density.gauss.LocalGauss method)
(pypmc.density.mixture.MixtureDensity method)
(pypmc.density.student_t.LocalStudentT method)
(pypmc.density.student_t.StudentT method)
G
Gauss (class in pypmc.density.gauss)
gaussian_pmc() (in module pypmc.mix_adapt.pmc)
GaussianInference (class in pypmc.mix_adapt.variational)
H
Hierarchical (class in pypmc.mix_adapt.hierarchical)
History (class in pypmc.tools)
hyperrectangle() (in module pypmc.tools.indicator)
I
ImportanceSampler (class in pypmc.sampler.importance_sampling)
K
kullback_leibler() (in module pypmc.mix_adapt.hierarchical)
L
likelihood_bound() (pypmc.mix_adapt.variational.GaussianInference method)
LocalDensity (class in pypmc.density.base)
LocalGauss (class in pypmc.density.gauss)
LocalStudentT (class in pypmc.density.student_t)
log_likelihood() (pypmc.mix_adapt.pmc.PMC method)
M
M_step() (pypmc.mix_adapt.variational.GaussianInference method)
make_mixture() (pypmc.mix_adapt.variational.GaussianInference method)
make_r_gaussmix() (in module pypmc.mix_adapt.r_value)
make_r_tmix() (in module pypmc.mix_adapt.r_value)
MarkovChain (class in pypmc.sampler.markov_chain)
merge_function_with_indicator() (in module pypmc.tools.indicator)
MixtureDensity (class in pypmc.density.mixture)
module
pypmc.density
pypmc.density.base
pypmc.density.gauss
pypmc.density.mixture
pypmc.density.student_t
pypmc.mix_adapt
pypmc.mix_adapt.hierarchical
pypmc.mix_adapt.pmc
pypmc.mix_adapt.r_value
pypmc.mix_adapt.variational
pypmc.sampler
pypmc.sampler.importance_sampling
pypmc.sampler.markov_chain
pypmc.tools
pypmc.tools.convergence
pypmc.tools.indicator
pypmc.tools.parallel_sampler
MPISampler (class in pypmc.tools.parallel_sampler)
multi_evaluate() (pypmc.density.base.ProbabilityDensity method)
(pypmc.density.gauss.Gauss method)
(pypmc.density.mixture.MixtureDensity method)
(pypmc.density.student_t.StudentT method)
N
normalize() (pypmc.density.mixture.MixtureDensity method)
normalized() (pypmc.density.mixture.MixtureDensity method)
P
partition() (in module pypmc.tools)
patch_data() (in module pypmc.tools)
perp() (in module pypmc.tools.convergence)
plot_mixture() (in module pypmc.tools)
plot_responsibility() (in module pypmc.tools)
PMC (class in pypmc.mix_adapt.pmc)
posterior2prior() (pypmc.mix_adapt.variational.GaussianInference method)
prior_posterior() (pypmc.mix_adapt.variational.GaussianInference method)
ProbabilityDensity (class in pypmc.density.base)
propose() (pypmc.density.base.LocalDensity method)
(pypmc.density.base.ProbabilityDensity method)
(pypmc.density.gauss.Gauss method)
(pypmc.density.gauss.LocalGauss method)
(pypmc.density.mixture.MixtureDensity method)
(pypmc.density.student_t.LocalStudentT method)
(pypmc.density.student_t.StudentT method)
prune() (pypmc.density.mixture.MixtureDensity method)
(pypmc.mix_adapt.variational.GaussianInference method)
pypmc.density
module
pypmc.density.base
module
pypmc.density.gauss
module
pypmc.density.mixture
module
pypmc.density.student_t
module
pypmc.mix_adapt
module
pypmc.mix_adapt.hierarchical
module
pypmc.mix_adapt.pmc
module
pypmc.mix_adapt.r_value
module
pypmc.mix_adapt.variational
module
pypmc.sampler
module
pypmc.sampler.importance_sampling
module
pypmc.sampler.markov_chain
module
pypmc.tools
module
pypmc.tools.convergence
module
pypmc.tools.indicator
module
pypmc.tools.parallel_sampler
module
R
r_group() (in module pypmc.mix_adapt.r_value)
r_value() (in module pypmc.mix_adapt.r_value)
recover_gaussian_mixture() (in module pypmc.density.mixture)
recover_t_mixture() (in module pypmc.density.mixture)
run() (pypmc.mix_adapt.hierarchical.Hierarchical method)
(pypmc.mix_adapt.pmc.PMC method)
(pypmc.mix_adapt.variational.GaussianInference method)
S
set_variational_parameters() (pypmc.mix_adapt.variational.GaussianInference method)
student_t_pmc() (in module pypmc.mix_adapt.pmc)
StudentT (class in pypmc.density.student_t)
U
update() (pypmc.density.gauss.Gauss method)
(pypmc.density.gauss.LocalGauss method)
(pypmc.density.student_t.StudentT method)
(pypmc.mix_adapt.variational.GaussianInference method)
V
VBMerge (class in pypmc.mix_adapt.variational)
W
Wishart_expect_log_lambda() (in module pypmc.mix_adapt.variational)
Wishart_H() (in module pypmc.mix_adapt.variational)
Wishart_log_B() (in module pypmc.mix_adapt.variational)